CHROM. 17 632

## Note

# Rapid fractionation of tRNA on benzoylated DEAE-porous glass

TAKAHARU MIZUTANI\* and YOSHIO TACHIBANA

Faculty of Pharmaceutical Sciences, Nagoya City University, Mizuho-ku, Nagoya 467 (Japan) (Received January 29th, 1985)

We have previously reported on the adsorption of different proteins on porous glass surfaces<sup>1</sup> and have developed an adsorption chromatographic method<sup>2,3</sup>. We found that protein adsorption on silicone-coated porous glass<sup>4</sup> and siliconized porous glass occurred in adsorption chromatography<sup>5</sup>. Ribonucleic acids of high molecular weight were adsorbed at high salt concentrations on porous glass or siliconized glass<sup>6,7</sup>, and the resulting materials were used as supports for the adsorption chromatography of nucleic acids, such as tRNA, mRNA and rRNA<sup>8,9</sup>.

tRNA has usually been fractionated by RPC-5 chromatography<sup>10</sup> and using benzoylated DEAE(BD)-cellulose<sup>11</sup>. We have previously developed an RPC-5-type system on siliconized porous glass by coating with Adogen 464<sup>12,13</sup>. On the other hand, reversed-phase high-performance liquid chromatography (HPLC) of nucleic acids, which is not based on ionic bonding, has been developed on Kel-F<sup>14</sup> and  $C_{18}^{15,16}$ , but this method is not suitable for preparing RNAs. BD-cellulose chromatography is a valuable method for the separation of tRNA<sup>11</sup>, but it is impossible to achieve a high flow-rate on BD-cellulose. BD-cellulose shrinks in the column after loading of tRNA and the chromatographic pattern is disturbed. In order to improve these properties of BD-cellulose, we attempted to separate tRNA species on BDporous glass (BD-PG) and found that BD-PG is a better support than BD-cellulose for the separation of tRNA.

#### EXPERIMENTAL

BD-PG was generously supplied by Central Glass (Tokyo, Japan) with a mean pore diameter of 670 Å and a particle size of 80–200 mesh. The contents of benzoyl and DEAE groups in BD-PG were 51 and 51  $\mu$ mol/ml (2.5 ml/g), respectively. The content of DEAE groups (29  $\mu$ mol/ml) in BD-PG was about one-fifth of that in BD-cellulose (150  $\mu$ mol/ml), and the content of benzoyl groups in BD-PG was also less than that in BD-cellulose<sup>11</sup>. BD-PG (1 g) bound approximately 30 mg of tRNA in 0.01 *M* acetate buffer–0.01 *M* magnesium chloride at pH 4.6, estimated by the depletion technique<sup>17</sup>. Regeneration of BD-PG was achieved by elution in sequence with 2 *M* sodium chloride–15% ethanol, water, 0.05 *N* sodium hydroxide, water, 1% sodium dodecyl sulphate and finally 0.01 *M* acetate buffer–0.01 *M* magnesium chloride.

Crude tRNA and aminoacyl-tRNA synthetase were prepared from bovine liver

as described previously<sup>12,13</sup>. Assay of the extent of aminoacylation of tRNA in the eluate from BD-PG columns was also carried out according to the literature<sup>12</sup>.

### **RESULTS AND DISCUSSION**

Fig. 1 shows the results of chromatography of tRNA (50 mg) on a column (50  $\times$  1.1 cm I.D.; 20 g) at 18°C and at a flow-rate of 40 ml/cm<sup>2</sup> · h. In Fig. 1A, tRNA<sup>IIe</sup> was eluted in tubes 81–85 and tRNA<sup>Ser</sup> in tubes 103–119. In Fig. 1B, tRNA<sup>Val</sup> was eluted in fraction 3 and tRNA<sup>Arg</sup> in fractions 9–12. Isoacceptor species of tRNA<sup>Thr</sup> and tRNA<sup>Pro</sup> were separated as shown in Fig. 1B and C, respectively. These tRNAs in each fraction were purified 3–8-fold over those in crude tRNA. Finally, the order of elution of tRNA species from the column was tRNA<sup>Val</sup>, tRNA<sup>Gly</sup>, tRNA<sup>IIe</sup>, tRNA<sup>Thr</sup>, tRNA<sup>Pro</sup>, tRNA<sup>Ser</sup>, tRNA<sup>Arg</sup> and tRNA<sup>Phe</sup>. The order of elution of tRNA species from the BD-PG column was compared with that on BD-cellulose<sup>12</sup>, and was found to be identical. However, tRNA was eluted from BD-PG at a higher concentration of sodium chloride than that from BD-cellulose. For example, tRNA<sup>Val</sup> was eluted at 0.83 *M* sodium chloride from BD-PG and at 0.53 *M* sodium chloride from



Fig. 1. Elution pattern of bovine liver tRNA (50 mg) on BD-PG. The first linear gradient (total volume 400 ml) from 0.3 to 1 M sodium chloride in 0.01 M acetate buffer and 0.01 M magnesium chloride at pH 4.6 was used for elution (fractions 1 to 92). The second linear gradient consisted of 1 M to 2 M sodium chloride and 15% ethanol (EtOH) in the same buffer (fractions 93 to 160). (A) Results of measurement of absorbance at 260 nm; identical patterns are shown in B and C with broken lines. Amino acid acceptor activities of tRNA in each fraction are shown in A-C. The cpm/absorbance values indicate the amount of amino acids bound on tRNA.

BD-cellulose. The eluting order on BD-PG was also similar to that on siliconized porous glass<sup>o</sup>.

Fig. 2 shows the results of chromatography of tRNA (25 mg) on the same column at 37°C and at a flow-rate of 150 ml/cm<sup>2</sup>/h. This flow-rate was obtained with a peristaltic pump by joining at the end of the column. In Fig. 2, tRNA<sup>IIe</sup> and major tRNA<sup>ser</sup> were eluted similarly to that in Fig. 1. The width of each peak was also identical with that in Fig. 1, and therefore rapid fractionation at a high flow-rate did not influence the separation of tRNA. However, the overall elution pattern in Fig. 2 was slightly different from that in Fig. 1, in addition to the salt concentration for tRNA to be eluted. This is caused by the temperature (18°C in Fig. 1 and 37°C in Fig. 2). The secondary structure of tRNA became looser at higher temperature and the elution points changed. For example, in Fig. 2 an isoaccepting tRNA<sup>Ser</sup> species was separated and a peak of minor tRNA<sub>GCU</sub> was eluted between the peaks of tRNA<sup>lle</sup> and major tRNA<sup>Ser</sup>. tRNA was eluted at a lower salt concentration in Fig. 2 than that in Fig. 1. Recoveries of tRNA were about 85% in both Figs. 1 and 2 and the remaining fraction was eluted with 0.05 N sodium hydroxide solution. BD-PG was stable in 0.05 N sodium hydroxide solution, although porous glass decomposed. However, one should avoid soaking BD-PG in 0.05 N sodium hydroxide solution for a long time(1 h) when washing.



Fig. 2. Elution pattern of tRNA (25 mg) on BD-PG at 37°C and at a high flow-rate (150 ml/cm<sup>2</sup>/h) with a linear gradient (total volume 600 ml) from 0.5 to 1.5 M sodium chloride-7.5% ethanol (EtOH) in the buffer. After elution with the gradient, the column was eluted with 2 M sodium chloride-15% ethanol in the buffer (at fraction 115). Other conditions are identical with those in Fig. 1.

### CONCLUSION

Bovine liver tRNA was rapidly fractionated on BD-PG. The order of elution of tRNA species from the column was tRNA<sup>Val</sup>, tRNA<sup>Gly</sup>, tRNA<sup>IIe</sup>, tRNA<sup>Thr</sup>, tRNA<sup>Pro</sup>, tRNA<sup>Ser</sup>, tRNA<sup>Arg</sup> and tRNA<sup>Phe</sup>, which is identical with that on BD-cellulose. BD-PG is better than BD-cellulose, because the former gives a high flow-rate and easy packing and it does not shrink in the column after loading of tRNA.

#### REFERENCES

1 T. Mizutani and A. Mizutani, J. Chromatogr., 111 (1975) 214.

2 T. Mizutani and A. Mizutani, J. Chromatogr., 120 (1976) 206.

- 3 T. Mizutani and A. Mizutani, J. Chromatogr., 168 (1979) 143.
- 4 T. Mizutani, J. Colloid Interface Sci., 82 (1981) 162.
- 5 T. Mizutani and T. Narihara, J. Chromatogr., 239 (1982) 755.
- 6 T. Mizutani, J. Non-Cryst. Solids, 55 (1983) 173.
- 7 T. Mizutani, J. Colloid Interface Sci., 93 (1983) 270.
- 8 T. Mizutani, J. Chromatogr., 262 (1983) 441.
- 9 T. Mizutani, J. Biochem, 94 (1983) 163.
- 10 R. L. Pearson, J. F. Weiss and A. D. Kelmers, Biochim. Biophys. Acta, 228 (1971) 770.
- 11 I. Gillam, S. Millward, D. Blew, M. von Tigerstrom, E. Winner and G. M. Tener, *Biochemistry*, 6 (1967) 3043.
- 12 T. Narihara, Y. Fujita and T. Mizutani, J. Chromatogr., 236 (1982) 513.
- 13 T. Mizutani, T. Narihara and A. Hashimoto, Eur. J. Biochem., 143 (1984) 9.
- 14 D. A. Usher, Nucl. Acids Res., 6 (1979) 2289.
- 15 P. N. Nguyen, J. L. Bradley and P. M. McGuire, J. Chromatogr., 236 (1982) 508.
- 16 S. Garcia and J. P. Liautard, J. Chromatogr., 296 (1984) 355.
- 17 T. Mizutani and A. Mizutani, J. Non-Cryst. Solids, 30 (1978) 23.